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NATIONAL AERONAW'ICS AND SPACE ADMINISTRATION 

THE STIFFTESS PROPERTIES OF STFESSED FABRICS 

AS OBTAINED FROM MODEL TESTS 

By George W. Zender and Jerry W. Deaton 

The s t i f fnes s  properties of a nylon-neoprene fabr ic  material sub- 
jected t o  uniaxial, biaxial ,  or shear stresses as obtained f r c m  tes ts  
of simple models a re  presented. The s t i f fnes s  properties are appli- 
cable t o  problems involving applied loads a f t e r  t he  fabr ic  i s  i n  an 
i n i t i a l  state of b iax ia l  tension such as occurs upon inf la t ion.  The 
results demonstrate the  inadequacy of uniaxial tests i n  obtaining the  
s t i f fnes s  properties t o  be used i n  the  design and analysis of in f la ta -  
ble fabr ic  s t ructures .  I n  order t o  obtain proper s t i f fnes s  values f o r  
use i n  t h e  design and analysis of s t ressed fabr ic  structures,  t e s t s  of 
simple models of the  type presented herein, subjected t o  stress condi- 
t i ons  similar t o  those anticipated i n  the ful l -scale  design, are  
r e  commended . 

INTRODUCTION 

Expandible s t ructures  have recently received considerable atten- 
t i o n  i n  the  design of space vehicles, principally because of packaging 
requirements and the  low loading in tens i t ies  associated with space 
f l i gh t .  Such s t ructures  have u t i l i z e d  many materials such as fi lms 
and f ab r i c s  expanded by foams or gases. Apar t i cu la r  f ab r i c  construc- 
t i o n  which has received a t ten t ion  i s  known as Airmat and w a s  developed 
by the  Goodyear Aircraf t  Corporation. Contained herein are the r e s u l t s  
of t e s t s  performed t o  determine the material propert ies  of a pa r t i cu la r  
nylon-neoprene Airmat f ab r i c  (manufacturer's designation XA27A209) which 
has been used a t  the Langley Research Center i n  s t ruc tu ra l  studies of. 
i n f l a t ab le  s t ructures .  (See r e f .  1. ) 

TEST SPECIMENS AND METHOD OF TESTING 

The Airmat fabr ic  used f o r  the  present invest igat ion consists of 
two material surfaces t i e d  together with "drop" yarns that provide a 
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I 1-inch space between surfaces, when inf la ted.  (See f ig .  l ( a ) . )  Each 
' surface consists of an inner ply of nylon Airmat weave, and a cover ply 

of p la in  weave coated w i t h  neoprene t o  contain the inf la t ion  gas. 
de ta i l s  of the fabric  a re  given i n  tab le  I. 
ply shown i n  figure l ( a )  contain one s e t  of yarns with considerable 
c r h p  while the other s e t  of yarns i s  more nearly s t ra ight .  
f ig .  l ( b ) . )  
so m a t  the crimped yarns of one ply a re  alined with the more nearly 
sti'aight yarns of the remaining ply. 
t a t ion  of the material, the  directions of the yarns of the heavier inner 
p l y  ( f ig .  l ( b ) )  a re  employed, that is, the direction of the warp yarns 
o f  the  inner ply i s  termed the  warp direct ion of the material, whereas 
the direction transverse t o  the  warp direction (that of the  more nearly 
s t ra ight  yarns of the inner ply)  i s  termed the f i l l  direction. 

Other 
Both the inner and cover 

(See 
The inner and cover plys a re  oriented a t  goo t o  each other 

For purposes of specifying orien- 

Three types of specimen were tes ted.  One type was a plain s t r i p  
o f  the  fabric;  a second was constructed as a beam and the third,  as a 
cylinder. General de ta i l s  of each ty-pe a re  shown i n  f igure 2. The 
cylinders were made of one surface of the A i r m a t  material obtained by 
severing the drop yarns so that approximately 1/2 inch of length of the 
drop yarns remained with the surface material. The surface material 
w a s  then fabricated into cyl indrical  form by splicing the two opposite 
sides of the surface together as shown i n  f igure 2(c) .  
beam specimens contained an extra-heavy coating of neoprene as evidenced 
by the comparisons of the weight per un i t  surface area shown i n  figure 2. 
The weights per uni t  surface area a r e  based on the t o t a l  surface area 
excluding the ends of the specimens. Two specimens of each type were 
tested,  one with the warp yarns and one with the f i l l  yarns oriented i n  
the longitudinal direction of the specimen. 

The s t r i p  and 

The s t r i p  specimens were subjected t o  t ens i l e  loads with dead- 
weights (inner surfaces adjacent during t e s t  ra ther  than with extended 
drop yarns indicated i n  f ig .  2 ) .  The beams were inf la ted  with a i r  and 
subjected t o  end bending moments o r  longitudinal t ens i l e  loads as  shown 
i n  figures 3 and 4. The cylinders were pressurized with air  and sub- 
jected t o  torsion as shown i n  f igure 5. 

Strains  on the s t r i p  and beam specimens were measured with 
Tuckerman opt ica l  s t r a in  gages of 1- or 2-inch gage length. 
dinal and transverse s t r a ins  w e r e  obtained a t  the  center of each cover 
surface. One of the character is t ics  of woven materials i s  that the 
s t r a in  under load i s  time-dependent. Figure 6 demonstrates the  varia- 
t ion  of s t r a in  with time for a s t r i p  of the material  subjected t o  a 
constant uniaxial  loading of 9 lb/in.  i n  the warp direction. Also 
shown i n  t h i s  f igure i s  the time dependency of the  s t r a i n  when the 
load i s  removed. It i s  apparent from the r e su l t s  of f igure 6 that 

Iongitu- 



c a r e f a  timing i s  required t o  obtain useful s t r a in  data from t e s t  
specimens. 

I Beams Subjected t o  Pressure and Bending Moments o r  Tensile Loads 

For the  s t r i p  and beam specimens, the s t r a in  measurements obtained 
a t  each load increment were read a f t e r  suff ic ient  time had elapsed 
(approximately 5 minutes) fo r  the s t r a in  not t o  be changing rapidly 
with time. 
maximum load was reached. 

Loads were applied progressively without unloading u n t i l  

The twist of the head a t  the loaded end of the cylinders was  meas- 

In  order t o  prevent 
ured by using an indicating arm attached t o  the head and a protractor 
of l5-inch radius mounted t o  the supporting frame. 
large l a t e r a l  displacements of the axis of the cylinders, the loading 
head contained a pin which extended through a loosely f i t t i n g  hole i n  
the  supporting frame shown i n  figure 5.  Twist measurements were 
obtained by using the same loading and timing procedure as described 
fo r  the s t r i p s  and beams. Pressures were measured with a standard 
pressure gage and a l l  tests were performed a t  room temperature 
(approximately 800 F) . 

RESULTS 

S t r ip  Tests 

Figure 7 shows the s t ress-s t ra in  characterist ics of the fabric  f o r  
uniaxial  load i n  the warp o r  f i l l  direction. 
square test-point symbols per ta in  t o  s t r i p s  of the spliced fabr ic  and 
a re  discussed i n  the subsequent section on beam specimens. 
shown by the so l id  curves fa i red  through the c i rcu lar  symbols a re  the 
r e su l t s  obtained f o r  increasing load on the s t r i p  specimens while the 
dashed curves through the c i rcu lar  symbols show the resu l t s  for 
unloading. Also indicated i n  figure 7 i s  the value of Poisson's ra t io ,  
obtained from the r a t i o  of the transverse s t ra in  t o  longitudinal s t r a i n  
a t  the various s t r e s s  levels,  for  increasing load and f o r  decreasing 
load. 
s t r e s s  leve ls  included herein, the s t ress-s t ra in  relationship i s  essen- 
t i a l l y  l inear  f o r  increasing load or s t r a i n  except f o r  the time- 
dependency ef fec ts  discussed previously. 

The data shown by the 

The data 

The uniaxial  r e su l t s  shown i n  figure 7 indicate that f o r  the 

Table I1 shows the sectional properties used i n  determining the 
load per inch of width of the beam covers. The sectional properties 
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were evaluated f r o m  the  assumed cross section which closely approximated 
the actual cross section as indicated by the  sketch accompanying 
'table 11. For the calculations the effect ive thickness of the  skin i n  
the spl ice  region was increased over that i n  the unspliced region i n  
d i r e c t  proportion t o  the increased s t i f fnes s  of the spliced region of 
the actual beams over that of the  unspliced region as determined f r o m  
uniaxial tension t e s t s .  The square test-point symbols on figure 7 
show the resu l t s  of u n i a x i a l  tension t e s t s  obtained from the  spl iced 
portion of the beams which were cut f r o m  the beams a f t e r  the main 
program of t e s t s  were completed. 
in width by 12 inches i n  length and included the beam fabric ,  sp l ice  
fabric,  and the adhesive material. 
( f ig .  7), the extensional s t i f fnes s  i n  the warp direction f o r  the 
fabric-plus-splice s t r i p  i s  1.24 times that f o r  the fabr ic  alone. 
the f i l l  direction, the same sp l ice  material  contributes m r e  substan- 
tially t o  the extensional s t i f fnes s  ( f i l l  count i s  l e s s  than w81p count) 
and thus the  corresponding value i s  1.46. 
assumed i n  the calculations, the effective thickness of the edge region 
was .ta&en as 1.24 times tha t  of the remainder of the beam f o r  the beam 
with the warp i n  the longitudinal direction, while the similar value f o r  
the beam with the fill i n  the longitudinal direction w a s  1.46. 

The spl ice  specimens were 2.36 inches 

For the curves f o r  increasing load 

I n  

Therefore, f o r  the beams 

Figure 8 shows a typ ica l  s e t  of r e su l t s  f o r  the  beam specimens. 
The results shown are  f o r  the  in f l a t ion  pressure of 15 psig and bending 
o r  tension. The curves labeled "due t o  pressure" show the longitudinal 
and transverse s t r a i n  obtained f o r  values of the longitudinal load per  
inch of width 

The pressure then was maintained constant and bending moment was intro-  
duced, and the resul t ing longitudinal s t r a ins  a re  given by the  open 
circular  symbols (darkened symbols indicate  transverse s t r a ins )  f o r  the 
"tension" cover of the beam and by the square symbols f o r  the ttcompression" 
cover ("tension" and "compression" refer t o  the components of the s t r a i n  
due to  bending). 

as the beam was i n f l a t ed  t o  15 psig in te rna l  pressure. 

The data shown by the  t r iangular  symbols i n  f igure 8 were obtained 
fromthe same beam used i n  the bending t e s t s  a t  the same pressure, but 
the beam was subjected t o  d i rec t  t e n s i l e  loads as shown i n  f igure 4. 
"he symbols show the  average of the strains measured on opposite sides 
o f  the  specimen. 
t e s t s  wlth the t ens i l e  data f r o m  the  bending t e s t s ,  tends t o  lend con- 
fidence t o  the method of accounting f o r  the  sp l ice  material, since the 
s t ress  dis t r ibut ion i n  the spl ices  d i f f e r s  considerably f o r  the two cases. 

A signif icant  observation apparent i n  the data shown i n  figure 8 

A comparison of the r e su l t s  obtained f r o m  the t e n s i l e  

is the  essent ia l ly  l i nea r  nature of the s t ress -s t ra in  relationship f o r  
the fabric  due to applied moments when the fabr ic  i s  i n  an i n i t i a l  state 
of tension due t o  in te rna l  pressure. Such near-l inearity indicates the 
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poss ib i l i t y  of defining meaningful e l a s t i c  constants which would be 
useful  i n  the  analysis of the behavior of a f ab r i c  s t ructure  as a r e s u l t  
of load application a f t e r  the structure has been inf la ted.  Data similar 
t o  that shown i n  figure 8 were obtained f o r  other pressures, and the 
longitudinal s t i f fnesses  were obtained from the slopes of the l i n e s  
f a i r ed  through the data f o r  the longitudinal s t r a i n s  f o r  the tension 
and compression sides of the beams a f t e r  pressurization. 
a re  shown i n  f igure  9 f o r  values of the transverse s t r e s s  due t o  pres- 
sure f o r  the various pressures investigated. 
Poisson's r a t i o  corresponding t o  the transverse s t r e s s  are  a l so  shown 
i n  figure 9. 
longitudinal s t r a i n  data of f igure 8, the value of Poisson's r a t i o  
var ies  somewhat with s t r e s s  leve l .  Consequently, the values shown 
i n  f igure 9 are  the average of the values obtained f o r  increasing 
load increments a t  a given pressure. 

The r e s u l t s  

The average values of 

A s  indicated i n  f igure 7 and by the transverse and 

Cylinders Subjected t o  Pressure and Torsion 

Figure 10 shows the torque-twist results obtained with t h e  cylinders 
I f o r  values of the longitudinal s t r e s s  a t  the various pressure levels .  

For small values of twist, the shear s t i f fness  i s  appro-tely 100 lb/ in .  
f o r  both cylinders at all values of the  pressure s t r e s ses  tes ted.  
shear s t i f f n e s s  was evaluated from elementary tors ion theory with the 
e f f ec t  of the sp l ice  material  neglected.) The s t i f fnes s  falls off as 
the  torque o r  twist increases and, as indicated i n  the figure,  the  
shear s t i f f n e s s  i s  then dependent upon the  pressure s t r e s s  and the  
stress r a t i o  as evidenced by the  difference i n  the  r e su l t s  obtained 
f o r  the two cylinders. 
f o r  t he  range included i n  f igure 10. 

(The 

There was no buckling evident on t he  cylinders 

DISCUSSION 

It i s  evident from f igure 9 t ha t  the presence of rather small 
transverse s t r e s ses  contributes s ignif icant ly  t o  the extensional st iff-  
ness of the  A i r m a t  material  over that obtained f o r  uniaxial stresses. 
A t  s t resses  above 2 lb/ in .  i n  the fill direction, the extensional stiff- 
ness i n  the warp direct ion i s  reasonably constant. Similarly, the st iff-  
ness i n  the f i l l  direct ion does not change appreciably when the  s t r e s s  i n  
the warp direct ion i s  above 1 lb/ in .  
warp direct ion i s  considerably l e s s  than the extensional s t i f fnes s  i n  
the warp direct ion,  whereas the  compressive s t i f f n e s s  i n  the  f i l l  direc- 
t i on  is approximately the same as the extensional s t i f fnes s  i n  the f i l l  
direct ion.  
more nearly straight than the warp yarns and, consequently, the f i l l  
yarns are i n  a more favorable posit ion t o  support compressive loads. 

The compressive s t i f fnes s  i n  the 

Such behavior appears reasonable since the f i l l  yarns are 
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The values of Poisson's r a t i o  f o r  the  fabr ic  as shown i n  f igure 9 
are, i n  general, smaller than the values usually encountered f o r  iso- 
tropic materials. 
appreciably a f fec t  the value of Poisson's r a t io .  Indeed the values of 
Poisson's r a t i o  obtained f r o m  the s t r i p  t e s t s  (zero transverse s t r e s s )  
are essent ia l ly  i n  l i n e  with the average of results f o r  b i ada l  s t resses .  
A considerable difference i s  indicated ( f ig .  g(a))  between the values 
of Poisson's r a t io  (warp direction) f o r  tension f o r  the beam loaded i n  
bending and those f o r  the beam loaded i n  tension. 
resul ts  from the difference i n  the transverse s t r a ins  of the beam when 
loaded i n  bending o r  tension, which i s  demonstrated by the darkened 
circular and t r iangular  symbols i n  f igure 8(a); however, the reason 
f o r  the  difference i n  transverse s t r a ins  i s  unknown. 

The r e su l t s  show that the transverse stress does not 

This difference 

Figure 10 shows that the shear s t i f fnes s  i s  approldmately 100 lb/in.  
f o r  low values of torque or twist, (up t o  about 1 lb/ in .  shear flow). 
This value of shear s t i f fness  i s  approximately one-tenth the extensional 
s t i f fhess  of the fabr ic  i n  the warp direction. This fac tor  daumstrates 
the low in-plane shear s t i f fnes s  of the material as compared with iso- 
tropic materials where the shear s t i f fnes s  i s  usually about four-tenths 
the extensional s t i f fness .  
an order of ma 
t r e l l i s  model $" see r e f .  2) where the shear s t i f fnes s  i s  equal t o  the 
pressure s t ress .  
f r ic t ion  between f ibers  i s  probably largely responsible f o r  the much 
larger shear s t i f fnes s  than i s  indicated by the trellis-model analysis, 
although the spl ice  material a lso contributed t o  the s t i f fnes s  of the 
cylinders. 

On the  other hand, the shear s t i f fnes s  i s  
i tude greater than that indicated by analysis of a 

The heavy neoprene coating on the fabr ic  along with 

While the use of beams i n  the present investigation was convenient 
because of the unique construction of A i r m a t  fabric,  the  use of cylinders 
i s  more prac t ica l  f o r  coated fabr ic  materials i n  general. 
cylinders mqr be subjected t o  t e n s i l e  o r  compressive loads t o  obtain the 
proper s t i f fnesses .  For such cylinders, two diametrically opposite 
splices a re  recommended, ra ther  than a single spl ice  as shown herein, 
i n  order t o  avoid large bending dis tor t ions of the  cylinder. 
are a l so  convenient fo r  bending or tors ion tests.  
however, both curvature and spl ices  cause considerable d i f f i cu l ty  i n  
obtaining useful transverse s t r a i n  data f o r  use i n  evaluating Poisson's 
ra t io .  

Pressurized 

Cylinders 
On sma l l  cylinders, 

The s t i f fness  properties of a par t icu lar  nylon-neoprene fabr ic  
material subjected t o  uniaxial, biaxial, o r  shear s t resses  have been 
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presented. The s t i f fness  properties a re  applicable t o  problems 
involving applied loads after the  fabric  i s  i n  an i n i t i a l  state of 
b i ax ia l  tension such as occurs upon inf la t ion.  The results demon- 
strate the  inadequacy of uniaxial  tests i n  obtaining s t i f fnes s  prop- 
ert ies t o  be used f o r  fabr ic  materials subjected t o  b iax ia l  stress 
conditions. In  order t o  obtain proper s t i f fness  values for use i n  
the  design and analysis of s t ressed fabr ic  structures,  tests of 
simple models of t he  type included herein, subjected t o  stress con- 
d i t ions  similar t o  those ant ic ipated i n  the  ful l -scale  design, are 
re comende d. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field,  V a . ,  March 24, 1961. 
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TABIS I. - DETAILS OF FABRIC MATERIAL" 

Yarn material 
Weave 
Weight, oz/sq yd of surface area 
Warp count, ends/in. 
F i l l  count, ends/in. 
Drop-yarn count, ends/sq in .  

Goodyear Aircraf t  Corporation XA27A209. a 

bGoodyear Aircraf t  Corporation 6877. 
'Goodyear Aircraf t  Corporation 3511N. 

Cover plyc 

Nylon 
Plain 

2.05 
105 
96 ----- 
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TABLF: 11. - SECTIONAL PROPERTIES OF BEAMS 

3.88(Unspliced sk in )  

+ 

--- ------- 
Enclosed 

area = 5.54 sq i n .  
1 " 

Assumed sec t ion  1.04 outside t o  outside 

------- 

Trace of outer periphery of f i l l - l o n g i t u d i n a l  beam at  7 psig pressure 

Warp F i  11 
longi tudinal  longitudinal 

Effect ive thickness at  splice 
Unspliced thickness Y K  

(from f ig .  7) . . . . . . . . . . . . . .  1.24 1.46 

Effective periphery, i n .  , f o r :  
. . . . . . . .  7.76 7.76 

Spliced sk in  (2( 0.5)K) 1.24 1.46 
5.08 5.98 

T o t a l  . . . . . . . . . . . . . . . . . .  14.08 15.20 

Unspliced skin (2(3.88)) 

Spliced e l l i p se  ( 4 . X )  
. . . . . . . . .  . . . . . . . . .  

Effective moment of i n e r t i a  , in,3, for: 
Unspliced thickness ^.  . . . . .  Unspliced sk in  (2(3.88)(0.5)') 1.94 1.94 

Spliced e l l ipse  (O.5K) 
. . . . . .  Spliced sk in  (2( 0.3) (0.5)*K). 0.31 0.37 

0.62 0.73 
To ta l  . . . . . . . . . . . . . . . . . .  2.87 3.04 

. . . . . . . . .  
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N y l o n  c o v e r  p 

INylon i n n e r  p l y  

(a) Airmat. 

L-61-1072 

(b) Photomicrograph of inner ply. 

Figure 1.- Details of Airmat type of construction. 

- 4 - 
t - 3 +  
7 1  

1 
I 

- C I  amped  b y  2 i n .  w i d t h  I 
‘\ e n d  p l a t e s  

I l l  

S p l  i c e  
i n .  w i d t h  

(a) Strip; (b) Beam; (c) Cylinder; 
Weight Weight Weight 

= 0.385 lb. = 0.420 lb. = 0.349 lb 
sq ft sq ft sq ft 

(without splice, 
c.288 lb). 

Figure 2.- Details of test specimens. A l l  dimensions are in inches. 
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I 

i 
B 

I 

Figure 4 . -  Beam tension test setup. L-60-4663 



L- 59- 5 267 Figure 5 .  - Cylinder t w i s t i n g  t e s t  setup. 
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Figure 7.- Uniaxial stress-strain characteristics and values of Poisson's 
ratio of strip specimens for low loads. 
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Fig-re 8.- Typical stress-strain results for beams with inflation pres- 
sure of 15 psig and bending or tension. 
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Figure 9.- Effect of transverse stress due to pressure on stiffness and 
average values of Poisson's ratio. 
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Figure 10.- Torque plotted against twist for pressurized cylinders. 
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